
Investigation of a Modified Mid-Point 
Quadrature Formula 

By D. Jagerman 

1. Introduction. The mid-point quadrature formula 

(1.1) X f(x) dx-N () 

possesses the valuable attribute that its coefficients are equal. This provides a 
convenience in computation; further, if the quantitiesf( (2j - 1 )/2N) are measured, 
and hence subject to random error, then, on a minimum variance basis and the 
requirement that the quadrature be exact for f(x) 1, the coefficients of the best 
linear quadrature formula are equal. In some applications, equal coefficients may 
be especially important. This arises, for example, in certain designs of phased ar- 
ray antennas where engineering constraints imply the requirement of equal co- 
efficients. 

Let a weight function p(x) satisfy 

(1.2) p(x) _ 0, f p(x) dx 1, 

then it is desirable to obtain an equal-coefficient formula for 

(1.3) 1(f) = f p(x)f(x) dx. 

The function 

(1.4) L(x) = f p(u) du 

satisfies 

(1.5) L(O) = 0, L(1) = 1 

and is monotonic increasing. Let 

(1.6) y = L(x), x = G(y) 

in which G(y) is the function inverse to L(x), then, defining the numbers xi, 
X2 .*** X XNby 

(1.7) xi = G 2j 1), 1 _ j _ N, 

the required quadrature formula is given by 

N 

(1.8) SN(f) =1 f(xi) N j=1 
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The sum SN(f) is clearly a Riemannian sum for 

(1.9) I(f) = ,{ f [G(y)] dy 

and hence, if f(x) is Riemann integrable, 

(1.10) lim SN(f) = I(f); 

however, using (1.6) and (1.3), 

(1.11) I(f) = I(f) 

and hence the approximation is secured. 
In order to use the quadrature sum (1 .8) effectively, it is necessary to have 

accurate estimates for the error RN(f) defined by 

(1.12) RA (f) = I(f) - SN(f). 

The class of functions for which RN(f) will be studied are those whose first deriva- 
tive is of bounded variation over [0, 1] and periodically extended with period one. 
At a point of discontinuity c, the value f(c) will be defined by 

(1.13) f(c) f(c+) + f(c-) 
2 

in which the plus and minus signs indicate limit from the right and limit from the 
left respectively. 

Section 2 of the paper introduces and proves three theorems for the estimation 
of RN(f). Theorem 1 provides an estimate of I RN(f) I in terms of f'(1) and the 
variation Vo (f') of f'(x) over [0, 1]. The essential feature is the existence of some 
order of derivative, say the rth, of L(x) which is bounded away from zero; then 

(1.14) Rv(f) = O(Nl-"r). 

The class of Stieltjes bandlimited functions, that is functions for which there 
exist a constant a > 0 and a function a(u) E BV [-o, o] so that 

(1.15) f(x) = Lueiu da(u) 

is an important subclass of f'(x) E BV [0, 1]. By utilizing the representation 
(1.15), Theorem 2 provides an estimate for I RN(f) I which may be stronger than 
that provided by Theorem 1. The improvement lies in the constant of the 0 in 
(1.14). 

The special case p(x) _ 1 is not covered by Theorems 1 and 2; however, Theo- 
rem 3 provides the sharp estimate 
(1.16) | RN(f) I < Vo(f') 

-16N 2 

In Section 3 an application of the quadrature theory is made to the representa- 
tion of a function H(t) (- oo < t < oo) by means of an equal-weighted average 
of some given function f(t, x) over the values f(t, xi). 
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2. Analytical Discussion. In order to establish the main theorems, the following 
two lemmas will be needed. 

LEMMA 1. cn = fo f'(x) sin [2irnL(x)] dx 

RN(f) =-N Z ( _1) CNk 

Proof. It will be convenient to introduce the function 

(2.1) SN(f; Y) = f FG (+ 2j- ~ 
(2.1 ) ~~N =1 L ( 2N j)] 

thus 

(2.2) SN(f; O) = SY(f) 

The function f[G(y)I may be expanded into a Fourier series on the interval (0, 1); 
one has 

(2.3) f[G(y)] I(f) + E a. cos 2irny + 1i b-n sin 27rny, 
n-=1 n=l 

in which 

(2.4) an 2 ff[G(y)] cos 2wrny dy, 

(2.5) bn=2 2 f [G(y)] sin 27rny dy. 

Define cn , dn by 

(2.6) Cn = G'(y)fI'[G(y)] sin 21rny dy = J f'(x) sin [27rnL(x)] dx, 

1 ~1 
(2.7) dn = G'(y)f'[G((y)] cos 27rny dy = f'(x) cos [27rnL(x)] dx, 

then integration by parts applied to (2.4) and (2.5) yields 

(2.8) an = --Cn 

(2.9) bn = f(?+) -f(l-) + 
1 

d 

The Bernoullian function 

(2.10) P(Y) = -2{y}, 

in which { y} designates the fractional part of y, has the Fourier series 

(2.11) p(sin 2=rny 
n=l Irfl 
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hence, replacing an, bn in (2.3) by their values in (2.8), (2.9), one obtains 

f[G(y)] = I(f) - _E Cn cos 27rny 
Ir n=1 n 

(2.12) 0 
+ 1 E dn sin 27rny + [f(O+ - f(1-)Ip(y). i n-1 n 

By summation of a geometric series, one has 

(2 ) N exp (i27rn (Y + 2j- )) = (-1)nIN exp (i27rny), N |n, 

= -0 N + n, 

and hence, letting n = Nk (k > 0 integral), 

(2.14) k cos 27rNk(y+22N 1) = (_1)k cos 27rNky, 

(2.15) L sin 2rNk + j-1 = (-1); sin 27rNky. N 2'=1 k y 2N / 

Equations (2.1), (2.12), (2.14), and (2.15) now yield 

SN(f; y) _ 1(f) - (-1),I k cos 27rNky 

(2.16) + - E ( d1) k sin 27rNky IN Al= 

+ [f(0+) -f( 1-) N (Y + 2j- ) N j=1" 2N / 
The Fourier series for p(y), (2.11), permits ready establishment of the identity 

(2.17) j + ( 2N 1) = (Ny + 1) 

hence 

SN(f; y) I(f) - ?NZ (-1) k cos 2rNky 
(2.18) ) =l 

+ ? E (_1)A; k sin 27rNky + f(O+) -f(1-) (Ny+ 

Setting y = 0 in (2.18) yields the result of the lemma. 
LEMMA 2. r > 2, integral, W(")(x) ? Er > 0 or 

W(r)(X) < Er<O for a~x~b 

w |fabcos W(x) dx < r2 (+E)I2Ir, 

fbsin W(x) dx < r2(r+1)/2Elr/ 
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Proof. It is clear that only the inequality W"r) (x) _ er > 0 need be considered. 
The proof only for cos W(x) will be carried out since that for sin W(x) is completely 
similar. The case r = 2 will be considered first. The function W'(x) is monotonic 
increasing, hence it vanishes at most once in [a, b], say at x = c, then 

fb c Wb 

(2.19) f cos W( x) dx + cos W(x) dx. 

Let 0 _ 5 < b - c be chosen, then 
b c+6 eb 

(2.20) J cos W(x) dx = J cos W(x) dx + J cos W(x) dx, 

and hence 

(2.21) fcos W(X) dx ? + cos W(x) dx 

One has 
Ib b 

cos W(x) dx = d sin W(x) 

(2.22) 1 
W 

1 f z i ~) 
W'(c + 5) J+ d sin W(x), 

in which the second mean-value theorem was used, and hence 

(2.23) 1 cos W(x) dx < 2 
+6 ~~~W'(c + 5 

Since 
Ic+5 

(2.24) W'(c + 5) = W"(x) dx ? US2, 

one obtains, from (2.21) 

(2.25) fcos W(x) dx + 
SCE2 

The choice 

(2.26) = \E-1/2 

yields 
Ib 

(2.27) cos W(x) dx < 2Ve2-112. 

The value of 5 in (2.26) may exceed b - c, however, in this case the inequality of 
(2.27) is certainly correct since the integral always admits the estimate b - c. 

Similarly choose 0 5 < c - a, then 

c 
c-' 

c 

(2.28) f cos W(x) dx = f cos W(x) dx + cos W(x) dx, 
a a c-b 
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and hence 

(2.29) f cos W(X) dx < cos W(x) dx + 6. 

One has 

( cos W(x) dx = d sin W(x) 

(2.30) 1'x 

_W' (C1- | d sin W(x), 

and hence 
fC5 2 

(2.31) C os W(X) dx < -W'(c- 

Since 

(2.32) -W'(c-a) = f W"(x) dx ? aE2, 

one obtains from (2.29) 

(2.33) cos W(x) dx < 6 + 2 

Hence 

(2.34) cos W(x) dx ? 2V/2&12,2 

and, from (2.19), 

(2.35) f cos W(x) dx < 4VE2-1/2. 

The lemma is thus established for r = 2. 
Induction will now be employed. The lemma is assumed true for r = k > 2. 

Since W(k+l) (x) > 0, W(k) (x) is monotonic increasing, and hence vanishes at most 
once in [a, b], say at x = c. Choose 0 < a ? b - c, then 

Ib c+6 b 

(2.36) cos W(x) dx = ] cos W(x) dx + ] cos W(x) dx, 
c c c+5 

and hence 
b ~~~~~~~Jb 

(2.37) j cos W(x) dx | a + cos W(x) dx 

The inductive hypothesis states 

(2.38) f cos W(x) dx < k2(k+1)12W(k)(C + a)-l1k 
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hence 

(2.39) cos W(x) dx < 6 + k2(k+1)/2W(k)(C + a)-I/k 

Since 

(2.40 ) Wk 
((c + a) = W(k+) (x dx ? aek+l 

one has 

(k1)2 -Ilk -Ilk 
(2.41) cos W(x) dx _a + k2( +a) a- -Ek+1 

The choice 

(2.42) 6 = 2k/2Ek+1+ 

yields 

(2.43) cos W(x) dx < (k + 1)2 ek+1 

The inequality (2.43) remains correct even for 6 > b -c. 
Similarly choose 0 ? 6 < c - a, then 

(2.44) f cos W(x) dx = f cos W(x) dlx + f Cos W(x) dx, 

and hence 

(2.45) f cos W(x) dx < J cos W(x) dx + 6. 

The inductive hypothesis yields 

(2.46) f cos W(x) dx < 6 + k2(k+l)/l [- W()c - a) l/k 

Since 

c 

(2.47) W(k )c - a ) = JC W ((x) dx ? a6k+l, 

one has 

(2.48) cos W(x) dx < 6 + k2 (k+l) /2a-Ik El/k 

Thus 

(2.49) f cos W(x) dx ? (lk + 1)2 (k+1), 
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and hence 

(2.50) f cos W(x) dx < (k + 1) 2(k+2)12 C(k+1) 

The lemma is now established. 
It is now possible to prove 
THEOREM 1. f'(x) E BV [0, 1], L(r) (X) _ Er > O for 0 < x < 1 or 

L(r)(X) < -Er < 0 for 0 < x < 1, r > 2 integral, 

Kr = r2 (r+D)12-lr 7r -1-1/r + Er' -/r 

1 

I RN(f) 
' 
I [If<(1) + V (fl)]KrN-1-1r; 

in which (x) is the Riemann zeta function. 
Proof. As in Lemma 1, let 

(2.51) Cn = ff'(x) sin [27rnL(x)] dx. 

Let 

(2.52) t(x) = f sin [2rnL(u)] du, 

then 

(2.53) cn = f f'(xA&'(x) dx. 

Integrating by parts, one obtains 

(2.54) cn = f'(1At(1) - fP (x) df'(x). 

Lemma 2 provides the following estimate for t(x): 

(r+1)12-l/r -1/r -1/r -1 r 
(2.55) |t(x) I < r2 7r +) r n 

hence (2.54) and (2.55) yield 

(2.56) c, I - f'(1) | + V (f)] r2 (r+l)l2-1/r7r-/rlEIr/rn-1/r 

The infinite series for RN(f) in Lemma 1 may now be estimated. Using (2.56), 
one obtains 

1 ~~~~~~~~~~~~~~~~~~~00 
(2.57) RN(f) ? [ [f'(1) -+ V (f') r2(r+l)/2-l/r7l-l/rEr -l/rN-r E k 

? k=l 

Since the infinite series of (2.57) is t(1 + 1/r), the inequality of the theorem fol- 
lows. 
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THEOREM 2. f (x) fJ eiux da (u), a(u) E BV [-I 

L(r)(x) > er > O for 0 X 1 or L(r)(x) < O for 0 _ x _ 1, 

r ? 2 integral 

I RN (f) I -V/-2o-V (a)KrAl-l/r. 
-a 

Proof. Using the representation 

(2.-8) f(x) f xeiux da(u) 

one has 

(2.59) f(x) euxiu d(u) 

and hence 

(2.60) cn. iuff eiu sin [2irnL(x)] d3 da(u). 

The inner integral of (2.60) may be written 

f ei sin [2rnL(x)] dx = 2 f sin [2rnL(x) - ux] dx 

(2.61) + - f sin [2rnL(x) + ux] dx 

+ 1 if cos [2rnL(x) - ux] dx - - i cos [2irnL(x) + ux] dx, 

hence, using Lemma 2, 

(2.62) f eiux sin [2irnL(x)] dx ?r2(r+2) 2-1 /r r-l/rn-1/r 

Thus 
ra 

I C ? < r2(r+2)!2-l~r-ulr>-llrn-llr ] lul1 d(u) 1 

(2.63) 
< Cn 1 - /\0 ( )(r+2) /2-1/r -1/r -h/r --1/r 

From the infinite series for RN(f) of Lemma 1, one obtains 

(2.64) I RN(f) ?< o V (a)r2(r+2)12 lr N-l-h/r 

and hence the result of the theorem. 
THEOREM 3. p(x) 1, f'(x) E BV [0, 1] 

=I RN(f) I < 116 V (f')N- . 
o 

The estimate is sharp. 
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Proof. Since p(x) 1, onle has L(x) = x and hence 

(2.65) n= f'(x) sin 2irnx dx. 

From (2.11), one has 

(2.66) JP + 2)f(x) dx - N L k jf'(x) sin 2irAkx dx. 

After using (2.65) in (2.66) aiid comparing with the series for RN(f) of Lemmtna 1, 
the following integral expression for RN(f) is obtained. 

(2.67) RN(f) = N fP (NX + f'(x) dx. 

The Bernoullian function 

(2.68) o(x) = p(u) du 

is periodic with period one and satisfies 

(2.69) 0 < (x) 8. 

In terms of o-(x), one has 

(2.70) 2RN(f) J {-+ (Nx + )1 df'(x) 

= 1 f 1f(TNx + - df'(x). 

Since 

(2.71) 1o(Nx+ 4) - i 

the inequality of the theorem follows. To show that the result is sharp, define U(x) 
by 

U(x) =1, x > 0 

(2.72) - 2, X = 0, 

- O X < O. 

and consider functions [I1 f(x) for which 

(2.73) f'(x) = sgn[1 - x - E U (2 
- I x 

then direct computation yields 

(2.74) RN(f) = 
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Since, one readily shows, 

(2.75) V (f') = 4N, 
0 

the proof is complete. 
3. An Application. In addition to the application of the theorems of this paper 

to the numerical evaluation of integrals, there are applications of theoretical and 
design character. One such application is the establishment of approximations to a 
function H(t) (- oo < t < oo) by means of an equal-weight average of the values 
over x of another function f (t, x). Thus let 

1 

(3.1) H(t) = f p(x)f(t, x) dx 

then one has immediately 

(3.2) H(t) = Sx(f) + Rv(f). 

As an example of (3.2), one may choose 

(3.3) f (t, x) = cos tx. 

Since 

(3.4) cos tX= cos ux da(u), l > 0 

ill which a(i) E BYr [-a-, a] and 

a(u) = , 'u < -t 

(3.5) _t 2, - u < t, 

=1, t<u; 

one has 

(3.6) V (a) = 1. 

Thus, a slight modification of Theorem 2 provides the following approximation 
theorem. 

THEOREM 4. H(t) = 101 p(x) cos tx dx 

m H(t) -N = cos txj < Kr I t I N-11r 

7The same error estimate is obtained if, in place of cos tx, the function sin tx were used. 
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